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Figure 3-4. Schematic of a perfect grating on the left and a grating illuminated by an illumination system suffering from 

false light. 

To test the hypothesis that the observed scattering is due to superimposed grating structures, we simulated a synthetic 
grating and its far field scatter pattern by computing the power spectral density using a Fourier transform. We attempted 
to reconstruct the measured straylight features in Figure 3-3 by testing a composition of various superimposed gratings. 
Figure 3-5 shows a promising candidate grating structure. It is composed of a nominal grating profile superimposed with 
three additional gratings: two linear and one concentric. Zooming on the 1st order peak of the nominal derived far field 
we obtain in Figure 3-6 (left). 

 
Figure 3-5. Synthetic, additional superimposed grating patterns used to investigate qualitatively the induced diffraction 

artifacts (so called satellites). 
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